-1 Removal
+1 Addition
/**/**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
* Based on Sprinter and grbl. * Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* *
* This program is free software: you can redistribute it and/or modify * This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or * the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version. * (at your option) any later version.
* *
* This program is distributed in the hope that it will be useful, * This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of * but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
* *
*/ */
/**/**
* Configuration_adv.h * Configuration_adv.h
* *
* Advanced settings. * Advanced settings.
* Only change these if you know exactly what you're doing. * Only change these if you know exactly what you're doing.
* Some of these settings can damage your printer if improperly set! * Some of these settings can damage your printer if improperly set!
* *
* Basic settings can be found in Configuration.h * Basic settings can be found in Configuration.h
* *
*/ */
#ifndef CONFIGURATION_ADV_H#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H#define CONFIGURATION_ADV_H
/**/**
* *
* *********************************** * ***********************************
* ** ATTENTION TO ALL DEVELOPERS ** * ** ATTENTION TO ALL DEVELOPERS **
* *********************************** * ***********************************
* *
* You must increment this version number for every significant change such as, * You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option. * but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
* *
* Note: Update also Version.h ! * Note: Update also Version.h !
*/ */
#define CONFIGURATION_ADV_H_VERSION 010100#define CONFIGURATION_ADV_H_VERSION 010100
// @section temperature// @section temperature
//===========================================================================//===========================================================================
//=============================Thermal Settings ============================//=============================Thermal Settings ============================
//===========================================================================//===========================================================================
#if DISABLED(PIDTEMPBED)#if DISABLED(PIDTEMPBED)
#define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control #define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control
#if ENABLED(BED_LIMIT_SWITCHING) #if ENABLED(BED_LIMIT_SWITCHING)
#define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif #endif
#endif#endif
/**/**
* Thermal Protection protects your printer from damage and fire if a * Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way. * thermistor falls out or temperature sensors fail in any way.
* *
* The issue: If a thermistor falls out or a temperature sensor fails, * The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected * Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on. * thermistor reads as a low temperature, the firmware will keep the heater on.
* *
* The solution: Once the temperature reaches the target, start observing. * The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long (period), * If the temperature stays too far below the target (hysteresis) for too long (period),
* the firmware will halt the machine as a safety precaution. * the firmware will halt the machine as a safety precaution.
* *
* If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD * If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD
*/ */
#if ENABLED(THERMAL_PROTECTION_HOTENDS)#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#define THERMAL_PROTECTION_PERIOD 40 // Seconds #define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius #define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
/** /**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the * Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE * WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109, * degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test. * but only if the current temperature is far enough below the target for a reliable test.
* *
* If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE * If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE
* WATCH_TEMP_INCREASE should not be below 2. * WATCH_TEMP_INCREASE should not be below 2.
*/ */
#define WATCH_TEMP_PERIOD 20 // Seconds #define WATCH_TEMP_PERIOD 20 // Seconds
#define WATCH_TEMP_INCREASE 2 // Degrees Celsius #define WATCH_TEMP_INCREASE 2 // Degrees Celsius
#endif#endif
/**/**
* Thermal Protection parameters for the bed are just as above for hotends. * Thermal Protection parameters for the bed are just as above for hotends.
*/ */
#if ENABLED(THERMAL_PROTECTION_BED)#if ENABLED(THERMAL_PROTECTION_BED)
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds #define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius #define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
/** /**
* Whenever an M140 or M190 increases the target temperature the firmware will wait for the * Whenever an M140 or M190 increases the target temperature the firmware will wait for the
* WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE * WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190, * degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190,
* but only if the current temperature is far enough below the target for a reliable test. * but only if the current temperature is far enough below the target for a reliable test.
* *
* If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease * If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease
* WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.) * WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.)
*/ */
#define WATCH_BED_TEMP_PERIOD 60 // Seconds #define WATCH_BED_TEMP_PERIOD 60 // Seconds
#define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius #define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius
#endif#endif
#if ENABLED(PIDTEMP)#if ENABLED(PIDTEMP)
// this adds an experimental additional term to the heating power, proportional to the extrusion speed. // this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated. // if Kc is chosen well, the additional required power due to increased melting should be compensated.
//#define PID_EXTRUSION_SCALING //#define PID_EXTRUSION_SCALING
#if ENABLED(PID_EXTRUSION_SCALING) #if ENABLED(PID_EXTRUSION_SCALING)
#define DEFAULT_Kc (100) //heating power=Kc*(e_speed) #define DEFAULT_Kc (100) //heating power=Kc*(e_speed)
#define LPQ_MAX_LEN 50 #define LPQ_MAX_LEN 50
#endif #endif
#endif#endif
/**/**
* Automatic Temperature: * Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode. * The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se". * The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor> * Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by * The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by executing M109 without F* * mintemp and maxtemp. Turn this off by executing M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp. * Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode * On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/ */
#define AUTOTEMP#define AUTOTEMP
#if ENABLED(AUTOTEMP)#if ENABLED(AUTOTEMP)
#define AUTOTEMP_OLDWEIGHT 0.98 #define AUTOTEMP_OLDWEIGHT 0.98
#endif#endif
//Show Temperature ADC value//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES//#define SHOW_TEMP_ADC_VALUES
/**/**
* High Temperature Thermistor Support * High Temperature Thermistor Support
* *
* Thermistors able to support high temperature tend to have a hard time getting * Thermistors able to support high temperature tend to have a hard time getting
* good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP * good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
* will probably be caught when the heating element first turns on during the * will probably be caught when the heating element first turns on during the
* preheating process, which will trigger a min_temp_error as a safety measure * preheating process, which will trigger a min_temp_error as a safety measure
* and force stop everything. * and force stop everything.
* To circumvent this limitation, we allow for a preheat time (during which, * To circumvent this limitation, we allow for a preheat time (during which,
* min_temp_error won't be triggered) and add a min_temp buffer to handle * min_temp_error won't be triggered) and add a min_temp buffer to handle
* aberrant readings. * aberrant readings.
* *
* If you want to enable this feature for your hotend thermistor(s) * If you want to enable this feature for your hotend thermistor(s)
* uncomment and set values > 0 in the constants below * uncomment and set values > 0 in the constants below
*/ */
// The number of consecutive low temperature errors that can occur// The number of consecutive low temperature errors that can occur
// before a min_temp_error is triggered. (Shouldn't be more than 10.)// before a min_temp_error is triggered. (Shouldn't be more than 10.)
//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0
// The number of milliseconds a hotend will preheat before starting to check// The number of milliseconds a hotend will preheat before starting to check
// the temperature. This value should NOT be set to the time it takes the// the temperature. This value should NOT be set to the time it takes the
// hot end to reach the target temperature, but the time it takes to reach// hot end to reach the target temperature, but the time it takes to reach
// the minimum temperature your thermistor can read. The lower the better/safer.// the minimum temperature your thermistor can read. The lower the better/safer.
// This shouldn't need to be more than 30 seconds (30000)// This shouldn't need to be more than 30 seconds (30000)
//#define MILLISECONDS_PREHEAT_TIME 0//#define MILLISECONDS_PREHEAT_TIME 0
// @section extruder// @section extruder
// extruder run-out prevention.// extruder run-out prevention.
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//#define EXTRUDER_RUNOUT_PREVENT//#define EXTRUDER_RUNOUT_PREVENT
#define EXTRUDER_RUNOUT_MINTEMP 190#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30#define EXTRUDER_RUNOUT_SECONDS 30
#define EXTRUDER_RUNOUT_ESTEPS 14 // mm filament#define EXTRUDER_RUNOUT_ESTEPS 14 // mm filament
#define EXTRUDER_RUNOUT_SPEED 1500 // extrusion speed#define EXTRUDER_RUNOUT_SPEED 1500 // extrusion speed
#define EXTRUDER_RUNOUT_EXTRUDE 100#define EXTRUDER_RUNOUT_EXTRUDE 100
// @section temperature// @section temperature
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100//#define FAN_KICKSTART_TIME 100
// This defines the minimal speed for the main fan, run in PWM mode// This defines the minimal speed for the main fan, run in PWM mode
// to enable uncomment and set minimal PWM speed for reliable running (1-255)// to enable uncomment and set minimal PWM speed for reliable running (1-255)
// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM
//#define FAN_MIN_PWM 50//#define FAN_MIN_PWM 50
// @section extruder// @section extruder
// Extruder cooling fans// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
//===========================================================================//===========================================================================
//============================ Mechanical Settings ==========================//============================ Mechanical Settings ==========================
//===========================================================================//===========================================================================
// @section homing// @section homing
// If you want endstops to stay on (by default) even when not homing// If you want endstops to stay on (by default) even when not homing
// enable this option. Override at any time with M120, M121.// enable this option. Override at any time with M120, M121.
//#define ENDSTOPS_ALWAYS_ON_DEFAULT//#define ENDSTOPS_ALWAYS_ON_DEFAULT
// @section extras// @section extras
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// Dual X Steppers// Dual X Steppers
// Uncomment this option to drive two X axis motors.// Uncomment this option to drive two X axis motors.
// The next unused E driver will be assigned to the second X stepper.// The next unused E driver will be assigned to the second X stepper.
//#define X_DUAL_STEPPER_DRIVERS//#define X_DUAL_STEPPER_DRIVERS
#if ENABLED(X_DUAL_STEPPER_DRIVERS)#if ENABLED(X_DUAL_STEPPER_DRIVERS)
// Set true if the two X motors need to rotate in opposite directions // Set true if the two X motors need to rotate in opposite directions
#define INVERT_X2_VS_X_DIR true #define INVERT_X2_VS_X_DIR true
#endif#endif
// Dual Y Steppers// Dual Y Steppers
// Uncomment this option to drive two Y axis motors.// Uncomment this option to drive two Y axis motors.
// The next unused E driver will be assigned to the second Y stepper.// The next unused E driver will be assigned to the second Y stepper.
//#define Y_DUAL_STEPPER_DRIVERS//#define Y_DUAL_STEPPER_DRIVERS
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
// Set true if the two Y motors need to rotate in opposite directions // Set true if the two Y motors need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true #define INVERT_Y2_VS_Y_DIR true
#endif#endif
// A single Z stepper driver is usually used to drive 2 stepper motors.// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this option to use a separate stepper driver for each Z axis motor.// Uncomment this option to use a separate stepper driver for each Z axis motor.
// The next unused E driver will be assigned to the second Z stepper.// The next unused E driver will be assigned to the second Z stepper.
//#define Z_DUAL_STEPPER_DRIVERS//#define Z_DUAL_STEPPER_DRIVERS
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper. // Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed. // That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature. // There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed. // After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2. // One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive. // If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// Play a little bit with small adjustments (0.5mm) and check the behaviour. // Play a little bit with small adjustments (0.5mm) and check the behaviour.
// The M119 (endstops report) will start reporting the Z2 Endstop as well. // The M119 (endstops report) will start reporting the Z2 Endstop as well.
//#define Z_DUAL_ENDSTOPS //#define Z_DUAL_ENDSTOPS
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)
#define Z2_USE_ENDSTOP _XMAX_ #define Z2_USE_ENDSTOP _XMAX_
#endif #endif
#endif // Z_DUAL_STEPPER_DRIVERS#endif // Z_DUAL_STEPPER_DRIVERS
// Enable this for dual x-carriage printers.// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.
//#define DUAL_X_CARRIAGE//#define DUAL_X_CARRIAGE
#if ENABLED(DUAL_X_CARRIAGE)#if ENABLED(DUAL_X_CARRIAGE)
// Configuration for second X-carriage // Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; // Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop. // the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage #define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed #define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position #define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position #define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software // However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command). // without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer. // Remember: you should set the second extruder x-offset to 0 in your slicer.
// There are a few selectable movement modes for dual x-carriages using M605 S<mode> // There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results // Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0) // as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so // Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1) // that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all // Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at // actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) // once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605. // This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0 #define DEFAULT_DUAL_X_CARRIAGE_MODE 0
// Default settings in "Auto-park Mode" // Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder #define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder #define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width) // Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100 #define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE#endif //DUAL_X_CARRIAGE
// @section homing// @section homing
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again://homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_BUMP_MM 5#define X_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5#define Y_HOME_BUMP_MM 5
#define Z_HOME_BUMP_MM 2#define Z_HOME_BUMP_MM 2
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
// When G28 is called, this option will make Y home before X// When G28 is called, this option will make Y home before X
//#define HOME_Y_BEFORE_X//#define HOME_Y_BEFORE_X
// @section machine// @section machine
#define AXIS_RELATIVE_MODES {false, false, false, false}#define AXIS_RELATIVE_MODES {false, false, false, false}
// Allow duplication mode with a basic dual-nozzle extruder// Allow duplication mode with a basic dual-nozzle extruder
//#define DUAL_NOZZLE_DUPLICATION_MODE//#define DUAL_NOZZLE_DUPLICATION_MODE
// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false#define INVERT_E_STEP_PIN false
// Default stepper release if idle. Set to 0 to deactivate.// Default stepper release if idle. Set to 0 to deactivate.
// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.
// Time can be set by M18 and M84.// Time can be set by M18 and M84.
#define DEFAULT_STEPPER_DEACTIVE_TIME 120#define DEFAULT_STEPPER_DEACTIVE_TIME 120
#define DISABLE_INACTIVE_X true#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_Y true#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.
#define DISABLE_INACTIVE_E true#define DISABLE_INACTIVE_E true
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0#define DEFAULT_MINTRAVELFEEDRATE 0.0
// @section lcd// @section lcd
#if ENABLED(ULTIPANEL)#if ENABLED(ULTIPANEL)
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel #define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder #define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#endif#endif
// @section extras// @section extras
// minimum time in microseconds that a movement needs to take if the buffer is emptied.// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN#define SLOWDOWN
// Frequency limit// Frequency limit
// See nophead's blog for more info// See nophead's blog for more info
// Not working O// Not working O
//#define XY_FREQUENCY_LIMIT 15//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)
//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//===========================================================================//===========================================================================
//=============================Additional Features===========================//=============================Additional Features===========================
//===========================================================================//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses///#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
// @section lcd// @section lcd
// Include a page of printer information in the LCD Main Menu// Include a page of printer information in the LCD Main Menu
//#define LCD_INFO_MENU//#define LCD_INFO_MENU
#if ENABLED(SDSUPPORT)#if ENABLED(SDSUPPORT)
// Some RAMPS and other boards don't detect when an SD card is inserted. You can work // Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// around this by connecting a push button or single throw switch to the pin defined // around this by connecting a push button or single throw switch to the pin defined
// as SD_DETECT_PIN in your board's pins definitions. // as SD_DETECT_PIN in your board's pins definitions.
// This setting should be disabled unless you are using a push button, pulling the pin to ground. // This setting should be disabled unless you are using a push button, pulling the pin to ground.
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER). // Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
#define SD_DETECT_INVERTED #define SD_DETECT_INVERTED
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place. #define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order. #define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that. // if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using: // using:
//#define MENU_ADDAUTOSTART //#define MENU_ADDAUTOSTART
// Show a progress bar on HD44780 LCDs for SD printing // Show a progress bar on HD44780 LCDs for SD printing
//#define LCD_PROGRESS_BAR //#define LCD_PROGRESS_BAR
#if ENABLED(LCD_PROGRESS_BAR) #if ENABLED(LCD_PROGRESS_BAR)
// Amount of time (ms) to show the bar // Amount of time (ms) to show the bar
#define PROGRESS_BAR_BAR_TIME 2000 #define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message // Amount of time (ms) to show the status message
#define PROGRESS_BAR_MSG_TIME 3000 #define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever) // Amount of time (ms) to retain the status message (0=forever)
#define PROGRESS_MSG_EXPIRE 0 #define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them // Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE //#define PROGRESS_MSG_ONCE
#endif #endif
// This allows hosts to request long names for files and folders with M33 // This allows hosts to request long names for files and folders with M33
//#define LONG_FILENAME_HOST_SUPPORT //#define LONG_FILENAME_HOST_SUPPORT
// This option allows you to abort SD printing when any endstop is triggered. // This option allows you to abort SD printing when any endstop is triggered.
// This feature must be enabled with "M540 S1" or from the LCD menu. // This feature must be enabled with "M540 S1" or from the LCD menu.
// To have any effect, endstops must be enabled during SD printing. // To have any effect, endstops must be enabled during SD printing.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED //#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#endif // SDSUPPORT#endif // SDSUPPORT
// for dogm lcd displays you can choose some additional fonts:// for dogm lcd displays you can choose some additional fonts:
#if ENABLED(DOGLCD)#if ENABLED(DOGLCD)
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT // save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana // we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT //#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a // If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line. // smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT //#define USE_SMALL_INFOFONT
#endif // DOGLCD#endif // DOGLCD
// @section safety// @section safety
// The hardware watchdog should reset the microcontroller disabling all outputs,// The hardware watchdog should reset the microcontroller disabling all outputs,
// in case the firmware gets stuck and doesn't do temperature regulation.// in case the firmware gets stuck and doesn't do temperature regulation.
#define USE_WATCHDOG#define USE_WATCHDOG
#if ENABLED(USE_WATCHDOG)#if ENABLED(USE_WATCHDOG)
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on. // If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset. // The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled. // However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL //#define WATCHDOG_RESET_MANUAL
#endif#endif
// @section lcd// @section lcd
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!// does not respect endstops!
//#define BABYSTEPPING//#define BABYSTEPPING
#if ENABLED(BABYSTEPPING)#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions #define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for deltabots! //not implemented for deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z #define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_MULTIPLICATOR 1 //faster movements #define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif#endif
// @section extruder// @section extruder
// extruder advance constant (s2/mm3)// extruder advance constant (s2/mm3)
////
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
////
// Hooke's law says: force = k * distance// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE//#define ADVANCE
#if ENABLED(ADVANCE)#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0 #define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85 #define D_FILAMENT 2.85
#endif#endif
// Implementation of a linear pressure control// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
//#define LIN_ADVANCE//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75 #define LIN_ADVANCE_K 75
#endif#endif
// @section leveling// @section leveling
// Default mesh area is an area with an inset margin on the print area.// Default mesh area is an area with an inset margin on the print area.
// Below are the macros that are used to define the borders for the mesh area,// Below are the macros that are used to define the borders for the mesh area,
// made available here for specialized needs, ie dual extruder setup.// made available here for specialized needs, ie dual extruder setup.
#if ENABLED(MESH_BED_LEVELING)#if ENABLED(MESH_BED_LEVELING)
#define MESH_MIN_X (X_MIN_POS + MESH_INSET) #define MESH_MIN_X (X_MIN_POS + MESH_INSET)
#define MESH_MAX_X (X_MAX_POS - (MESH_INSET)) #define MESH_MAX_X (X_MAX_POS - (MESH_INSET))
#define MESH_MIN_Y (Y_MIN_POS + MESH_INSET) #define MESH_MIN_Y (Y_MIN_POS + MESH_INSET)
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET)) #define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif#endif
// @section extras// @section extras
// Arc interpretation settings:// Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2738 bytes#define ARC_SUPPORT // Disabling this saves ~2738 bytes
#define MM_PER_ARC_SEGMENT 1#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25#define N_ARC_CORRECTION 25
// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
//#define BEZIER_CURVE_SUPPORT//#define BEZIER_CURVE_SUPPORT
const unsigned int dropsegments = 5; //everything with less than this number of steps will be ignored as move and joined with the next movementconst unsigned int dropsegments = 5; //everything with less than this number of steps will be ignored as move and joined with the next movement
// @section temperature// @section temperature
// Control heater 0 and heater 1 in parallel.// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL//#define HEATERS_PARALLEL
//===========================================================================//===========================================================================
//================================= Buffers =================================//================================= Buffers =================================
//===========================================================================//===========================================================================
// @section hidden// @section hidden
// The number of linear motions that can be in the plan at any give time.// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#if ENABLED(SDSUPPORT)#if ENABLED(SDSUPPORT)
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif#endif
// @section serial// @section serial
// The ASCII buffer for serial input// The ASCII buffer for serial input
#define MAX_CMD_SIZE 96#define MAX_CMD_SIZE 96
#define BUFSIZE 4#define BUFSIZE 4
// Transfer Buffer Size// Transfer Buffer Size
// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes.// To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes.// For ADVANCED_OK (M105) you need 32 bytes.
// For debug-echo: 128 bytes for the optimal speed.// For debug-echo: 128 bytes for the optimal speed.
// Other output doesn't need to be that speedy.// Other output doesn't need to be that speedy.
// :[0,2,4,8,16,32,64,128,256]// :[0,2,4,8,16,32,64,128,256]
#define TX_BUFFER_SIZE 0#define TX_BUFFER_SIZE 0
// Enable an emergency-command parser to intercept certain commands as they// Enable an emergency-command parser to intercept certain commands as they
// enter the serial receive buffer, so they cannot be blocked.// enter the serial receive buffer, so they cannot be blocked.
// Currently handles M108, M112, M410// Currently handles M108, M112, M410
// Does not work on boards using AT90USB (USBCON) processors!// Does not work on boards using AT90USB (USBCON) processors!
//#define EMERGENCY_PARSER//#define EMERGENCY_PARSER
// Bad Serial-connections can miss a received command by sending an 'ok'// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK//#define ADVANCED_OK
// @section fwretract// @section fwretract
// Firmware based and LCD controlled retract// Firmware based and LCD controlled retract
// M207 and M208 can be used to define parameters for the retraction.// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.// the moves are than replaced by the firmware controlled ones.
//#define FWRETRACT //ONLY PARTIALLY TESTED//#define FWRETRACT //ONLY PARTIALLY TESTED
#if ENABLED(FWRETRACT)#if ENABLED(FWRETRACT)
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt #define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 3 //default retract length (positive mm) #define RETRACT_LENGTH 3 //default retract length (positive mm)
#define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change #define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change
#define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s) #define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s)
#define RETRACT_ZLIFT 0 //default retract Z-lift #define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering) #define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change) #define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change)
#define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s) #define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s)
#endif#endif
// Add support for experimental filament exchange support M600; requires display// Add support for experimental filament exchange support M600; requires display
#if ENABLED(ULTIPANEL)#if ENABLED(ULTIPANEL)
// #define FILAMENT_CHANGE_FEATURE // Enable filament exchange menu and M600 g-code (used for runout sensor too) // #define FILAMENT_CHANGE_FEATURE // Enable filament exchange menu and M600 g-code (used for runout sensor too)
#if ENABLED(FILAMENT_CHANGE_FEATURE) #if ENABLED(FILAMENT_CHANGE_FEATURE)
#define FILAMENT_CHANGE_X_POS 3 // X position of hotend #define FILAMENT_CHANGE_X_POS 3 // X position of hotend
#define FILAMENT_CHANGE_Y_POS 3 // Y position of hotend #define FILAMENT_CHANGE_Y_POS 3 // Y position of hotend
#define FILAMENT_CHANGE_Z_ADD 10 // Z addition of hotend (lift) #define FILAMENT_CHANGE_Z_ADD 10 // Z addition of hotend (lift)
#define FILAMENT_CHANGE_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis) #define FILAMENT_CHANGE_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis)
#define FILAMENT_CHANGE_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers) #define FILAMENT_CHANGE_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers)
#define FILAMENT_CHANGE_RETRACT_LENGTH 2 // Initial retract in mm #define FILAMENT_CHANGE_RETRACT_LENGTH 2 // Initial retract in mm
// It is a short retract used immediately after print interrupt before move to filament exchange position // It is a short retract used immediately after print interrupt before move to filament exchange position
#define FILAMENT_CHANGE_RETRACT_FEEDRATE 60 // Initial retract feedrate in mm/s #define FILAMENT_CHANGE_RETRACT_FEEDRATE 60 // Initial retract feedrate in mm/s
#define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // Unload filament length from hotend in mm #define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // Unload filament length from hotend in mm
// Longer length for bowden printers to unload filament from whole bowden tube, // Longer length for bowden printers to unload filament from whole bowden tube,
// shorter lenght for printers without bowden to unload filament from extruder only, // shorter lenght for printers without bowden to unload filament from extruder only,
// 0 to disable unloading for manual unloading // 0 to disable unloading for manual unloading
#define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // Unload filament feedrate in mm/s - filament unloading can be fast #define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // Unload filament feedrate in mm/s - filament unloading can be fast
#define FILAMENT_CHANGE_LOAD_LENGTH 0 // Load filament length over hotend in mm #define FILAMENT_CHANGE_LOAD_LENGTH 0 // Load filament length over hotend in mm
// Longer length for bowden printers to fast load filament into whole bowden tube over the hotend, // Longer length for bowden printers to fast load filament into whole bowden tube over the hotend,
// Short or zero length for printers without bowden where loading is not used // Short or zero length for printers without bowden where loading is not used
#define FILAMENT_CHANGE_LOAD_FEEDRATE 10 // Load filament feedrate in mm/s - filament loading into the bowden tube can be fast #define FILAMENT_CHANGE_LOAD_FEEDRATE 10 // Load filament feedrate in mm/s - filament loading into the bowden tube can be fast
#define FILAMENT_CHANGE_EXTRUDE_LENGTH 50 // Extrude filament length in mm after filament is load over the hotend, #define FILAMENT_CHANGE_EXTRUDE_LENGTH 50 // Extrude filament length in mm after filament is load over the hotend,
// 0 to disable for manual extrusion // 0 to disable for manual extrusion
// Filament can be extruded repeatedly from the filament exchange menu to fill the hotend, // Filament can be extruded repeatedly from the filament exchange menu to fill the hotend,
// or until outcoming filament color is not clear for filament color change // or until outcoming filament color is not clear for filament color change
#define FILAMENT_CHANGE_EXTRUDE_FEEDRATE 3 // Extrude filament feedrate in mm/s - must be slower than load feedrate #define FILAMENT_CHANGE_EXTRUDE_FEEDRATE 3 // Extrude filament feedrate in mm/s - must be slower than load feedrate
#endif #endif
#endif#endif
/******************************************************************************\/******************************************************************************\
* enable this section if you have TMC26X motor drivers. * enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the Arduino IDE for this * you need to import the TMC26XStepper library into the Arduino IDE for this
******************************************************************************/ ******************************************************************************/
// @section tmc// @section tmc
//#define HAVE_TMCDRIVER//#define HAVE_TMCDRIVER
#if ENABLED(HAVE_TMCDRIVER)#if ENABLED(HAVE_TMCDRIVER)
//#define X_IS_TMC //#define X_IS_TMC
#define X_MAX_CURRENT 1000 //in mA #define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms #define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps #define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC //#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA #define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms #define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps #define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC //#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA #define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms #define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps #define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC //#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA #define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms #define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps #define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC //#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA #define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms #define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps #define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC //#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA #define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms #define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps #define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC //#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA #define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms #define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps #define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC //#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA #define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms #define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps #define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC //#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA #define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms #define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps #define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC //#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA #define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms #define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps #define E3_MICROSTEPS 16 //number of microsteps
#endif#endif
/******************************************************************************\/******************************************************************************\
* enable this section if you have L6470 motor drivers. * enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the Arduino IDE for this * you need to import the L6470 library into the Arduino IDE for this
******************************************************************************/ ******************************************************************************/
// @section l6470// @section l6470
//#define HAVE_L6470DRIVER//#define HAVE_L6470DRIVER
#if ENABLED(HAVE_L6470DRIVER)#if ENABLED(HAVE_L6470DRIVER)
//#define X_IS_L6470 //#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps #define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470 //#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps #define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470 //#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps #define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470 //#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps #define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470 //#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps #define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470 //#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps #define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470 //#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps #define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470 //#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps #define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470 //#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps #define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470 //#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps #define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high #define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off #define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall #define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif#endif
/**/**
* TWI/I2C BUS * TWI/I2C BUS
* *
* This feature is an EXPERIMENTAL feature so it shall not be used on production * This feature is an EXPERIMENTAL feature so it shall not be used on production
* machines. Enabling this will allow you to send and receive I2C data from slave * machines. Enabling this will allow you to send and receive I2C data from slave
* devices on the bus. * devices on the bus.
* *
* ; Example #1 * ; Example #1
* ; This macro send the string "Marlin" to the slave device with address 0x63 (99) * ; This macro send the string "Marlin" to the slave device with address 0x63 (99)
* ; It uses multiple M155 commands with one B<base 10> arg * ; It uses multiple M155 commands with one B<base 10> arg
* M155 A99 ; Target slave address * M155 A99 ; Target slave address
* M155 B77 ; M * M155 B77 ; M
* M155 B97 ; a * M155 B97 ; a
* M155 B114 ; r * M155 B114 ; r
* M155 B108 ; l * M155 B108 ; l
* M155 B105 ; i * M155 B105 ; i
* M155 B110 ; n * M155 B110 ; n
* M155 S1 ; Send the current buffer * M155 S1 ; Send the current buffer
* *
* ; Example #2 * ; Example #2
* ; Request 6 bytes from slave device with address 0x63 (99) * ; Request 6 bytes from slave device with address 0x63 (99)
* M156 A99 B5 * M156 A99 B5
* *
* ; Example #3 * ; Example #3
* ; Example serial output of a M156 request * ; Example serial output of a M156 request
* echo:i2c-reply: from:99 bytes:5 data:hello * echo:i2c-reply: from:99 bytes:5 data:hello
*/ */
// @section i2cbus// @section i2cbus
//#define EXPERIMENTAL_I2CBUS//#define EXPERIMENTAL_I2CBUS
#endif // CONFIGURATION_ADV_H#endif // CONFIGURATION_ADV_H
Editor
Original Text
Changed Text