Untitled diff

Created Diff never expires
/**
/**
* Marlin 3D Printer Firmware
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
*
* Based on Sprinter and grbl.
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
*
* This program is free software: you can redistribute it and/or modify
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* (at your option) any later version.
*
*
* This program is distributed in the hope that it will be useful,
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
*/


/**
/**
* Configuration_adv.h
* Configuration_adv.h
*
*
* Advanced settings.
* Advanced settings.
* Only change these if you know exactly what you're doing.
* Only change these if you know exactly what you're doing.
* Some of these settings can damage your printer if improperly set!
* Some of these settings can damage your printer if improperly set!
*
*
* Basic settings can be found in Configuration.h
* Basic settings can be found in Configuration.h
*
*
*/
*/
#ifndef CONFIGURATION_ADV_H
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H


/**
/**
*
*
* ***********************************
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
* ***********************************
*
*
* You must increment this version number for every significant change such as,
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
*
* Note: Update also Version.h !
* Note: Update also Version.h !
*/
*/
#define CONFIGURATION_ADV_H_VERSION 010100
#define CONFIGURATION_ADV_H_VERSION 010100


// @section temperature
// @section temperature


//===========================================================================
//===========================================================================
//=============================Thermal Settings ============================
//=============================Thermal Settings ============================
//===========================================================================
//===========================================================================


#if DISABLED(PIDTEMPBED)
#if DISABLED(PIDTEMPBED)
#define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control
#define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control
#if ENABLED(BED_LIMIT_SWITCHING)
#if ENABLED(BED_LIMIT_SWITCHING)
#define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#endif
#endif
#endif


/**
/**
* Thermal Protection protects your printer from damage and fire if a
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
* thermistor falls out or temperature sensors fail in any way.
*
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
*
* The solution: Once the temperature reaches the target, start observing.
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long (period),
* If the temperature stays too far below the target (hysteresis) for too long (period),
* the firmware will halt the machine as a safety precaution.
* the firmware will halt the machine as a safety precaution.
*
*
* If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD
* If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD
*/
*/
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
#define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius


/**
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
* but only if the current temperature is far enough below the target for a reliable test.
*
*
* If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE
* If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE
* WATCH_TEMP_INCREASE should not be below 2.
* WATCH_TEMP_INCREASE should not be below 2.
*/
*/
#define WATCH_TEMP_PERIOD 20 // Seconds
#define WATCH_TEMP_PERIOD 20 // Seconds
#define WATCH_TEMP_INCREASE 2 // Degrees Celsius
#define WATCH_TEMP_INCREASE 2 // Degrees Celsius
#endif
#endif


/**
/**
* Thermal Protection parameters for the bed are just as above for hotends.
* Thermal Protection parameters for the bed are just as above for hotends.
*/
*/
#if ENABLED(THERMAL_PROTECTION_BED)
#if ENABLED(THERMAL_PROTECTION_BED)
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius


/**
/**
* Whenever an M140 or M190 increases the target temperature the firmware will wait for the
* Whenever an M140 or M190 increases the target temperature the firmware will wait for the
* WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE
* WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190,
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190,
* but only if the current temperature is far enough below the target for a reliable test.
* but only if the current temperature is far enough below the target for a reliable test.
*
*
* If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease
* If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease
* WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.)
* WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.)
*/
*/
#define WATCH_BED_TEMP_PERIOD 60 // Seconds
#define WATCH_BED_TEMP_PERIOD 60 // Seconds
#define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius
#define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius
#endif
#endif


#if ENABLED(PIDTEMP)
#if ENABLED(PIDTEMP)
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
//#define PID_EXTRUSION_SCALING
//#define PID_EXTRUSION_SCALING
#if ENABLED(PID_EXTRUSION_SCALING)
#if ENABLED(PID_EXTRUSION_SCALING)
#define DEFAULT_Kc (100) //heating power=Kc*(e_speed)
#define DEFAULT_Kc (100) //heating power=Kc*(e_speed)
#define LPQ_MAX_LEN 50
#define LPQ_MAX_LEN 50
#endif
#endif
#endif
#endif


/**
/**
* Automatic Temperature:
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by executing M109 without F*
* mintemp and maxtemp. Turn this off by executing M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
*/
#define AUTOTEMP
#define AUTOTEMP
#if ENABLED(AUTOTEMP)
#if ENABLED(AUTOTEMP)
#define AUTOTEMP_OLDWEIGHT 0.98
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
#endif


//Show Temperature ADC value
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
//#define SHOW_TEMP_ADC_VALUES


/**
/**
* High Temperature Thermistor Support
* High Temperature Thermistor Support
*
*
* Thermistors able to support high temperature tend to have a hard time getting
* Thermistors able to support high temperature tend to have a hard time getting
* good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
* good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
* will probably be caught when the heating element first turns on during the
* will probably be caught when the heating element first turns on during the
* preheating process, which will trigger a min_temp_error as a safety measure
* preheating process, which will trigger a min_temp_error as a safety measure
* and force stop everything.
* and force stop everything.
* To circumvent this limitation, we allow for a preheat time (during which,
* To circumvent this limitation, we allow for a preheat time (during which,
* min_temp_error won't be triggered) and add a min_temp buffer to handle
* min_temp_error won't be triggered) and add a min_temp buffer to handle
* aberrant readings.
* aberrant readings.
*
*
* If you want to enable this feature for your hotend thermistor(s)
* If you want to enable this feature for your hotend thermistor(s)
* uncomment and set values > 0 in the constants below
* uncomment and set values > 0 in the constants below
*/
*/


// The number of consecutive low temperature errors that can occur
// The number of consecutive low temperature errors that can occur
// before a min_temp_error is triggered. (Shouldn't be more than 10.)
// before a min_temp_error is triggered. (Shouldn't be more than 10.)
//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0
//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0


// The number of milliseconds a hotend will preheat before starting to check
// The number of milliseconds a hotend will preheat before starting to check
// the temperature. This value should NOT be set to the time it takes the
// the temperature. This value should NOT be set to the time it takes the
// hot end to reach the target temperature, but the time it takes to reach
// hot end to reach the target temperature, but the time it takes to reach
// the minimum temperature your thermistor can read. The lower the better/safer.
// the minimum temperature your thermistor can read. The lower the better/safer.
// This shouldn't need to be more than 30 seconds (30000)
// This shouldn't need to be more than 30 seconds (30000)
//#define MILLISECONDS_PREHEAT_TIME 0
//#define MILLISECONDS_PREHEAT_TIME 0


// @section extruder
// @section extruder


// extruder run-out prevention.
// extruder run-out prevention.
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//#define EXTRUDER_RUNOUT_PREVENT
//#define EXTRUDER_RUNOUT_PREVENT
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30
#define EXTRUDER_RUNOUT_SECONDS 30
#define EXTRUDER_RUNOUT_ESTEPS 14 // mm filament
#define EXTRUDER_RUNOUT_ESTEPS 14 // mm filament
#define EXTRUDER_RUNOUT_SPEED 1500 // extrusion speed
#define EXTRUDER_RUNOUT_SPEED 1500 // extrusion speed
#define EXTRUDER_RUNOUT_EXTRUDE 100
#define EXTRUDER_RUNOUT_EXTRUDE 100


// @section temperature
// @section temperature


//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
#define TEMP_SENSOR_AD595_GAIN 1.0


//This is for controlling a fan to cool down the stepper drivers
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
#define CONTROLLERFAN_SPEED 255 // == full speed


// When first starting the main fan, run it at full speed for the
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
//#define FAN_KICKSTART_TIME 100


// This defines the minimal speed for the main fan, run in PWM mode
// This defines the minimal speed for the main fan, run in PWM mode
// to enable uncomment and set minimal PWM speed for reliable running (1-255)
// to enable uncomment and set minimal PWM speed for reliable running (1-255)
// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM
// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM
//#define FAN_MIN_PWM 50
//#define FAN_MIN_PWM 50


// @section extruder
// @section extruder


// Extruder cooling fans
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case
// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.
// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed


//===========================================================================
//===========================================================================
//============================ Mechanical Settings ==========================
//============================ Mechanical Settings ==========================
//===========================================================================
//===========================================================================


// @section homing
// @section homing


// If you want endstops to stay on (by default) even when not homing
// If you want endstops to stay on (by default) even when not homing
// enable this option. Override at any time with M120, M121.
// enable this option. Override at any time with M120, M121.
//#define ENDSTOPS_ALWAYS_ON_DEFAULT
//#define ENDSTOPS_ALWAYS_ON_DEFAULT


// @section extras
// @section extras


//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.


// Dual X Steppers
// Dual X Steppers
// Uncomment this option to drive two X axis motors.
// Uncomment this option to drive two X axis motors.
// The next unused E driver will be assigned to the second X stepper.
// The next unused E driver will be assigned to the second X stepper.
//#define X_DUAL_STEPPER_DRIVERS
//#define X_DUAL_STEPPER_DRIVERS
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
// Set true if the two X motors need to rotate in opposite directions
// Set true if the two X motors need to rotate in opposite directions
#define INVERT_X2_VS_X_DIR true
#define INVERT_X2_VS_X_DIR true
#endif
#endif




// Dual Y Steppers
// Dual Y Steppers
// Uncomment this option to drive two Y axis motors.
// Uncomment this option to drive two Y axis motors.
// The next unused E driver will be assigned to the second Y stepper.
// The next unused E driver will be assigned to the second Y stepper.
//#define Y_DUAL_STEPPER_DRIVERS
//#define Y_DUAL_STEPPER_DRIVERS
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
// Set true if the two Y motors need to rotate in opposite directions
// Set true if the two Y motors need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#define INVERT_Y2_VS_Y_DIR true
#endif
#endif


// A single Z stepper driver is usually used to drive 2 stepper motors.
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this option to use a separate stepper driver for each Z axis motor.
// Uncomment this option to use a separate stepper driver for each Z axis motor.
// The next unused E driver will be assigned to the second Z stepper.
// The next unused E driver will be assigned to the second Z stepper.
//#define Z_DUAL_STEPPER_DRIVERS
//#define Z_DUAL_STEPPER_DRIVERS


#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)


// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// Play a little bit with small adjustments (0.5mm) and check the behaviour.
// Play a little bit with small adjustments (0.5mm) and check the behaviour.
// The M119 (endstops report) will start reporting the Z2 Endstop as well.
// The M119 (endstops report) will start reporting the Z2 Endstop as well.


//#define Z_DUAL_ENDSTOPS
//#define Z_DUAL_ENDSTOPS


#if ENABLED(Z_DUAL_ENDSTOPS)
#if ENABLED(Z_DUAL_ENDSTOPS)
#define Z2_USE_ENDSTOP _XMAX_
#define Z2_USE_ENDSTOP _XMAX_
#endif
#endif


#endif // Z_DUAL_STEPPER_DRIVERS
#endif // Z_DUAL_STEPPER_DRIVERS


// Enable this for dual x-carriage printers.
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.
// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.
//#define DUAL_X_CARRIAGE
//#define DUAL_X_CARRIAGE
#if ENABLED(DUAL_X_CARRIAGE)
#if ENABLED(DUAL_X_CARRIAGE)
// Configuration for second X-carriage
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
// However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Remember: you should set the second extruder x-offset to 0 in your slicer.


// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])


// This is the default power-up mode which can be later using M605.
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0


// Default settings in "Auto-park Mode"
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder


// Default x offset in duplication mode (typically set to half print bed width)
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#define DEFAULT_DUPLICATION_X_OFFSET 100


#endif //DUAL_X_CARRIAGE
#endif //DUAL_X_CARRIAGE


// @section homing
// @section homing


//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_BUMP_MM 5
#define X_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5
#define Z_HOME_BUMP_MM 2
#define Z_HOME_BUMP_MM 2
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.


// When G28 is called, this option will make Y home before X
// When G28 is called, this option will make Y home before X
//#define HOME_Y_BEFORE_X
//#define HOME_Y_BEFORE_X


// @section machine
// @section machine


#define AXIS_RELATIVE_MODES {false, false, false, false}
#define AXIS_RELATIVE_MODES {false, false, false, false}


// Allow duplication mode with a basic dual-nozzle extruder
// Allow duplication mode with a basic dual-nozzle extruder
//#define DUAL_NOZZLE_DUPLICATION_MODE
//#define DUAL_NOZZLE_DUPLICATION_MODE


// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
#define INVERT_E_STEP_PIN false


// Default stepper release if idle. Set to 0 to deactivate.
// Default stepper release if idle. Set to 0 to deactivate.
// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.
// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.
// Time can be set by M18 and M84.
// Time can be set by M18 and M84.
#define DEFAULT_STEPPER_DEACTIVE_TIME 120
#define DEFAULT_STEPPER_DEACTIVE_TIME 120
#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.
#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.
#define DISABLE_INACTIVE_E true
#define DISABLE_INACTIVE_E true


#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
#define DEFAULT_MINTRAVELFEEDRATE 0.0


// @section lcd
// @section lcd


#if ENABLED(ULTIPANEL)
#if ENABLED(ULTIPANEL)
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#endif
#endif


// @section extras
// @section extras


// minimum time in microseconds that a movement needs to take if the buffer is emptied.
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
#define DEFAULT_MINSEGMENTTIME 20000


// If defined the movements slow down when the look ahead buffer is only half full
// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN
#define SLOWDOWN


// Frequency limit
// Frequency limit
// See nophead's blog for more info
// See nophead's blog for more info
// Not working O
// Not working O
//#define XY_FREQUENCY_LIMIT 15
//#define XY_FREQUENCY_LIMIT 15


// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)


// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]


// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)


// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)
// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)
//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps
//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps


// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}


//===========================================================================
//===========================================================================
//=============================Additional Features===========================
//=============================Additional Features===========================
//===========================================================================
//===========================================================================


#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value


//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again


// @section lcd
// @section lcd


// Include a page of printer information in the LCD Main Menu
// Include a page of printer information in the LCD Main Menu
//#define LCD_INFO_MENU
//#define LCD_INFO_MENU


#if ENABLED(SDSUPPORT)
#if ENABLED(SDSUPPORT)


// Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// around this by connecting a push button or single throw switch to the pin defined
// around this by connecting a push button or single throw switch to the pin defined
// as SD_DETECT_PIN in your board's pins definitions.
// as SD_DETECT_PIN in your board's pins definitions.
// This setting should be disabled unless you are using a push button, pulling the pin to ground.
// This setting should be disabled unless you are using a push button, pulling the pin to ground.
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
#define SD_DETECT_INVERTED
#define SD_DETECT_INVERTED


#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.


#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
// using:
//#define MENU_ADDAUTOSTART
//#define MENU_ADDAUTOSTART


// Show a progress bar on HD44780 LCDs for SD printing
// Show a progress bar on HD44780 LCDs for SD printing
//#define LCD_PROGRESS_BAR
//#define LCD_PROGRESS_BAR


#if ENABLED(LCD_PROGRESS_BAR)
#if ENABLED(LCD_PROGRESS_BAR)
// Amount of time (ms) to show the bar
// Amount of time (ms) to show the bar
#define PROGRESS_BAR_BAR_TIME 2000
#define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message
// Amount of time (ms) to show the status message
#define PROGRESS_BAR_MSG_TIME 3000
#define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever)
// Amount of time (ms) to retain the status message (0=forever)
#define PROGRESS_MSG_EXPIRE 0
#define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them
// Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE
//#define PROGRESS_MSG_ONCE
#endif
#endif


// This allows hosts to request long names for files and folders with M33
// This allows hosts to request long names for files and folders with M33
//#define LONG_FILENAME_HOST_SUPPORT
//#define LONG_FILENAME_HOST_SUPPORT


// This option allows you to abort SD printing when any endstop is triggered.
// This option allows you to abort SD printing when any endstop is triggered.
// This feature must be enabled with "M540 S1" or from the LCD menu.
// This feature must be enabled with "M540 S1" or from the LCD menu.
// To have any effect, endstops must be enabled during SD printing.
// To have any effect, endstops must be enabled during SD printing.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED


#endif // SDSUPPORT
#endif // SDSUPPORT


// for dogm lcd displays you can choose some additional fonts:
// for dogm lcd displays you can choose some additional fonts:
#if ENABLED(DOGLCD)
#if ENABLED(DOGLCD)
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
//#define USE_BIG_EDIT_FONT


// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
#endif // DOGLCD


// @section safety
// @section safety


// The hardware watchdog should reset the microcontroller disabling all outputs,
// The hardware watchdog should reset the microcontroller disabling all outputs,
// in case the firmware gets stuck and doesn't do temperature regulation.
// in case the firmware gets stuck and doesn't do temperature regulation.
#define USE_WATCHDOG
#define USE_WATCHDOG


#if ENABLED(USE_WATCHDOG)
#if ENABLED(USE_WATCHDOG)
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
//#define WATCHDOG_RESET_MANUAL
#endif
#endif


// @section lcd
// @section lcd


// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time
// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!
// does not respect endstops!
//#define BABYSTEPPING
//#define BABYSTEPPING
#if ENABLED(BABYSTEPPING)
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for deltabots!
//not implemented for deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
#endif


// @section extruder
// @section extruder


// extruder advance constant (s2/mm3)
// extruder advance constant (s2/mm3)
//
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
//
// Hooke's law says: force = k * distance
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
//#define ADVANCE


#if ENABLED(ADVANCE)
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#define D_FILAMENT 2.85
#endif
#endif


// Implementation of a linear pressure control
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
//#define LIN_ADVANCE
//#define LIN_ADVANCE


#if ENABLED(LIN_ADVANCE)
#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75
#define LIN_ADVANCE_K 75
#endif
#endif


// @section leveling
// @section leveling


// Default mesh area is an area with an inset margin on the print area.
// Default mesh area is an area with an inset margin on the print area.
// Below are the macros that are used to define the borders for the mesh area,
// Below are the macros that are used to define the borders for the mesh area,
// made available here for specialized needs, ie dual extruder setup.
// made available here for specialized needs, ie dual extruder setup.
#if ENABLED(MESH_BED_LEVELING)
#if ENABLED(MESH_BED_LEVELING)
#define MESH_MIN_X (X_MIN_POS + MESH_INSET)
#define MESH_MIN_X (X_MIN_POS + MESH_INSET)
#define MESH_MAX_X (X_MAX_POS - (MESH_INSET))
#define MESH_MAX_X (X_MAX_POS - (MESH_INSET))
#define MESH_MIN_Y (Y_MIN_POS + MESH_INSET)
#define MESH_MIN_Y (Y_MIN_POS + MESH_INSET)
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif
#endif


// @section extras
// @section extras


// Arc interpretation settings:
// Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2738 bytes
#define ARC_SUPPORT // Disabling this saves ~2738 bytes
#define MM_PER_ARC_SEGMENT 1
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
#define N_ARC_CORRECTION 25


// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
//#define BEZIER_CURVE_SUPPORT
//#define BEZIER_CURVE_SUPPORT


const unsigned int dropsegments = 5; //everything with less than this number of steps will be ignored as move and joined with the next movement
const unsigned int dropsegments = 5; //everything with less than this number of steps will be ignored as move and joined with the next movement


// @section temperature
// @section temperature


// Control heater 0 and heater 1 in parallel.
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//#define HEATERS_PARALLEL


//===========================================================================
//===========================================================================
//================================= Buffers =================================
//================================= Buffers =================================
//===========================================================================
//===========================================================================


// @section hidden
// @section hidden


// The number of linear motions that can be in the plan at any give time.
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#if ENABLED(SDSUPPORT)
#if ENABLED(SDSUPPORT)
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
#endif


// @section serial
// @section serial


// The ASCII buffer for
// The ASCII buffer for s