StableXSwap Code versus SushiChef.sol

Created Diff never expires
96 removals
263 lines
95 additions
262 lines
pragma solidity 0.6.12;
pragma solidity 0.6.12;



import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "@openzeppelin/contracts/utils/EnumerableSet.sol";
import "@openzeppelin/contracts/utils/EnumerableSet.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "./SushiToken.sol";
import "./StaxToken.sol";




interface IMigratorChef {
interface IMigratorChef {
// Perform LP token migration from legacy UniswapV2 to SushiSwap.
// Perform LP token migration from legacy PancakeSwap to StableX Swap.
// Take the current LP token address and return the new LP token address.
// Take the current LP token address and return the new LP token address.
// Migrator should have full access to the caller's LP token.
// Migrator should have full access to the caller's LP token.
// Return the new LP token address.
// Return the new LP token address.
//
//
// XXX Migrator must have allowance access to UniswapV2 LP tokens.
// XXX Migrator must have allowance access to PancakeSwap LP tokens.
// SushiSwap must mint EXACTLY the same amount of SushiSwap LP tokens or
// CakeSwap must mint EXACTLY the same amount of CakeSwap LP tokens or
// else something bad will happen. Traditional UniswapV2 does not
// else something bad will happen. Traditional PancakeSwap does not
// do that so be careful!
// do that so be careful!
function migrate(IERC20 token) external returns (IERC20);
function migrate(IBEP20 token) external returns (IBEP20);
}
}


// MasterChef is the master of Sushi. He can make Sushi and he is a fair guy.
// SuperChef is the master of StableX. He can make STAX and he is a fair guy.
//
//
// Note that it's ownable and the owner wields tremendous power. The ownership
// Note that it's ownable and the owner wields tremendous power. The ownership
// will be transferred to a governance smart contract once SUSHI is sufficiently
// will be transferred to a governance smart contract once STAX is sufficiently
// distributed and the community can show to govern itself.
// distributed and the community can show to govern itself.
//
//
// Have fun reading it. Hopefully it's bug-free. God bless.
// Have fun reading it. Hopefully it's bug-free. God bless.
contract MasterChef is Ownable {
contract SuperChef is Ownable {
using SafeMath for uint256;
using SafeMath for uint256;
using SafeERC20 for IERC20;
using SafeERC20 for IERC20;


// Info of each user.
// Info of each user.
struct UserInfo {
struct UserInfo {
uint256 amount; // How many LP tokens the user has provided.
uint256 amount; // How many LP tokens the user has provided.
uint256 rewardDebt; // Reward debt. See explanation below.
uint256 rewardDebt; // Reward debt. See explanation below.
//
//
// We do some fancy math here. Basically, any point in time, the amount of SUSHIs
// We do some fancy math here. Basically, any point in time, the amount of STAXs
// entitled to a user but is pending to be distributed is:
// entitled to a user but is pending to be distributed is:
//
//
// pending reward = (user.amount * pool.accSushiPerShare) - user.rewardDebt
// pending reward = (user.amount * pool.accStaxPerShare) - user.rewardDebt
//
//
// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
// Whenever a user deposits or withdraws LP tokens to a pool. Here's what happens:
// 1. The pool's `accSushiPerShare` (and `lastRewardBlock`) gets updated.
// 1. The pool's `accStaxPerShare` (and `lastRewardBlock`) gets updated.
// 2. User receives the pending reward sent to his/her address.
// 2. User receives the pending reward sent to his/her address.
// 3. User's `amount` gets updated.
// 3. User's `amount` gets updated.
// 4. User's `rewardDebt` gets updated.
// 4. User's `rewardDebt` gets updated.
}
}


// Info of each pool.
// Info of each pool.
struct PoolInfo {
struct PoolInfo {
IERC20 lpToken; // Address of LP token contract.
IERC20 lpToken; // Address of LP token contract.
uint256 allocPoint; // How many allocation points assigned to this pool. SUSHIs to distribute per block.
uint256 allocPoint; // How many allocation points assigned to this pool.
uint256 lastRewardBlock; // Last block number that SUSHIs distribution occurs.
uint256 lastRewardBlock; // Last block number that STAXs distribution occurs.
uint256 accSushiPerShare; // Accumulated SUSHIs per share, times 1e12. See below.
uint256 accStaxPerShare; // Accumulated STAXs per share, times 1e12. See below.
}
}


// The SUSHI TOKEN!
// The STAX TOKEN!
SushiToken public sushi;
StaxToken public stax;
// Dev address.
// Dev address.
address public devaddr;
address public devaddr;
// Block number when bonus SUSHI period ends.
// Block number when bonus STAX period ends.
uint256 public bonusEndBlock;
uint256 public bonusEndBlock;
// SUSHI tokens created per block.
// STAX tokens created per block.
uint256 public sushiPerBlock;
uint256 public staxPerBlock;
// Bonus muliplier for early sushi makers.
// Bonus muliplier for early stax makers.
uint256 public constant BONUS_MULTIPLIER = 10;
uint256 public constant BONUS_MULTIPLIER = 10;
// The migrator contract. It has a lot of power. Can only be set through governance (owner).
// The migrator contract. It has a lot of power. Can only be set through governance (owner).
IMigratorChef public migrator;
IMigratorChef public migrator;


// Info of each pool.
// Info of each pool.
PoolInfo[] public poolInfo;
PoolInfo[] public poolInfo;
// Info of each user that stakes LP tokens.
// Info of each user that stakes LP tokens.
mapping (uint256 => mapping (address => UserInfo)) public userInfo;
mapping (uint256 => mapping (address => UserInfo)) public userInfo;
// Total allocation points. Must be the sum of all allocation points in all pools.
// Total allocation poitns. Must be the sum of all allocation points in all pools.
uint256 public totalAllocPoint = 0;
uint256 public totalAllocPoint = 0;
// The block number when SUSHI mining starts.
// The block number when STAX mining starts.
uint256 public startBlock;
uint256 public startBlock;


event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);


constructor(
constructor(
SushiToken _sushi,
StaxToken _stax,
address _devaddr,
address _devaddr,
uint256 _sushiPerBlock,
uint256 _staxPerBlock,
uint256 _startBlock,
uint256 _startBlock,
uint256 _bonusEndBlock
uint256 _bonusEndBlock
) public {
) public {
sushi = _sushi;
stax = _stax;
devaddr = _devaddr;
devaddr = _devaddr;
sushiPerBlock = _sushiPerBlock;
staxPerBlock = _staxPerBlock;
bonusEndBlock = _bonusEndBlock;
bonusEndBlock = _bonusEndBlock;
startBlock = _startBlock;
startBlock = _startBlock;
}
}


// Set the migrator contract. Can only be called by the owner.
function setMigrator(IMigratorChef _migrator) public onlyOwner {
migrator = _migrator;
}

// Migrate lp token to another lp contract. Can be called by anyone. We trust that migrator contract is good.
function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IBEP20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IBEP20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
pool.lpToken = newLpToken;
}

function poolLength() external view returns (uint256) {
function poolLength() external view returns (uint256) {
return poolInfo.length;
return poolInfo.length;
}
}


// Add a new lp to the pool. Can only be called by the owner.
// Add a new lp to the pool. Can only be called by the owner.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
// XXX DO NOT add the same LP token more than once. Rewards will be messed up if you do.
function add(uint256 _allocPoint, IERC20 _lpToken, bool _withUpdate) public onlyOwner {
function add(uint256 _allocPoint, IERC20 _lpToken, bool _withUpdate) public onlyOwner {
if (_withUpdate) {
if (_withUpdate) {
massUpdatePools();
massUpdatePools();
}
}
uint256 lastRewardBlock = block.number > startBlock ? block.number : startBlock;
uint256 lastRewardBlock = block.number > startBlock ? block.number : startBlock;
totalAllocPoint = totalAllocPoint.add(_allocPoint);
totalAllocPoint = totalAllocPoint.add(_allocPoint);
poolInfo.push(PoolInfo({
poolInfo.push(PoolInfo({
lpToken: _lpToken,
lpToken: _lpToken,
allocPoint: _allocPoint,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
lastRewardBlock: lastRewardBlock,
accSushiPerShare: 0
accStaxPerShare: 0
}));
}));
}
}


// Update the given pool's SUSHI allocation point. Can only be called by the owner.
// Update the given pool's STAX allocation point. Can only be called by the owner.
function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) public onlyOwner {
function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) public onlyOwner {
if (_withUpdate) {
if (_withUpdate) {
massUpdatePools();
massUpdatePools();
}
}
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);
poolInfo[_pid].allocPoint = _allocPoint;
poolInfo[_pid].allocPoint = _allocPoint;
}
}


// Set the migrator contract. Can only be called by the owner.
function setMigrator(IMigratorChef _migrator) public onlyOwner {
migrator = _migrator;
}

// Migrate lp token to another lp contract. Can be called by anyone. We trust that migrator contract is good.
function migrate(uint256 _pid) public {
require(address(migrator) != address(0), "migrate: no migrator");
PoolInfo storage pool = poolInfo[_pid];
IERC20 lpToken = pool.lpToken;
uint256 bal = lpToken.balanceOf(address(this));
lpToken.safeApprove(address(migrator), bal);
IERC20 newLpToken = migrator.migrate(lpToken);
require(bal == newLpToken.balanceOf(address(this)), "migrate: bad");
pool.lpToken = newLpToken;
}

// Return reward multiplier over the given _from to _to block.
// Return reward multiplier over the given _from to _to block.
function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) {
function getMultiplier(uint256 _from, uint256 _to) public view returns (uint256) {
if (_to <= bonusEndBlock) {
if (_to <= bonusEndBlock) {
return _to.sub(_from).mul(BONUS_MULTIPLIER);
return _to.sub(_from).mul(BONUS_MULTIPLIER);
} else if (_from >= bonusEndBlock) {
} else if (_from >= bonusEndBlock) {
return _to.sub(_from);
return _to.sub(_from);
} else {
} else {
return bonusEndBlock.sub(_from).mul(BONUS_MULTIPLIER).add(
return bonusEndBlock.sub(_from).mul(BONUS_MULTIPLIER).add(
_to.sub(bonusEndBlock)
_to.sub(bonusEndBlock)
);
);
}
}
}
}


// View function to see pending SUSHIs on frontend.
// View function to see pending STAXs on frontend.
function pendingSushi(uint256 _pid, address _user) external view returns (uint256) {
function pendingStax(uint256 _pid, address _user) external view returns (uint256) {
PoolInfo storage pool = poolInfo[_pid];
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][_user];
UserInfo storage user = userInfo[_pid][_user];
uint256 accSushiPerShare = pool.accSushiPerShare;
uint256 accStaxPerShare = pool.accStaxPerShare;
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (block.number > pool.lastRewardBlock && lpSupply != 0) {
if (block.number > pool.lastRewardBlock && lpSupply != 0) {
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 sushiReward = multiplier.mul(sushiPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
uint256 staxReward = multiplier.mul(staxPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
accSushiPerShare = accSushiPerShare.add(sushiReward.mul(1e12).div(lpSupply));
accStaxPerShare = accStaxPerShare.add(staxReward.mul(1e12).div(lpSupply));
}
}
return user.amount.mul(accSushiPerShare).div(1e12).sub(user.rewardDebt);
return user.amount.mul(accStaxPerShare).div(1e12).sub(user.rewardDebt);
}
}


// Update reward variables for all pools. Be careful of gas spending!
// Update reward variables for all pools. Be careful of gas spending!
function massUpdatePools() public {
function massUpdatePools() public {
uint256 length = poolInfo.length;
uint256 length = poolInfo.length;
for (uint256 pid = 0; pid < length; ++pid) {
for (uint256 pid = 0; pid < length; ++pid) {
updatePool(pid);
updatePool(pid);
}
}
}
}


// Update reward variables of the given pool to be up-to-date.
// Update reward variables of the given pool to be up-to-date.
function updatePool(uint256 _pid) public {
function updatePool(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
PoolInfo storage pool = poolInfo[_pid];
if (block.number <= pool.lastRewardBlock) {
if (block.number <= pool.lastRewardBlock) {
return;
return;
}
}
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
uint256 lpSupply = pool.lpToken.balanceOf(address(this));
if (lpSupply == 0) {
if (lpSupply == 0) {
pool.lastRewardBlock = block.number;
pool.lastRewardBlock = block.number;
return;
return;
}
}
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
uint256 sushiReward = multiplier.mul(sushiPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
uint256 staxReward = multiplier.mul(staxPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
sushi.mint(devaddr, sushiReward.div(10));
stax.mint(devaddr, staxReward.div(8));
sushi.mint(address(this), sushiReward);
stax.mint(address(this), staxReward);
pool.accSushiPerShare = pool.accSushiPerShare.add(sushiReward.mul(1e12).div(lpSupply));
pool.accStaxPerShare = pool.accStaxPerShare.add(staxReward.mul(1e12).div(lpSupply));
pool.lastRewardBlock = block.number;
pool.lastRewardBlock = block.number;
}
}


// Deposit LP tokens to MasterChef for SUSHI allocation.
// Deposit LP tokens to SuperChef for STAX allocation.
function deposit(uint256 _pid, uint256 _amount) public {
function deposit(uint256 _pid, uint256 _amount) public {
PoolInfo storage pool = poolInfo[_pid];
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
UserInfo storage user = userInfo[_pid][msg.sender];
updatePool(_pid);
updatePool(_pid);
if (user.amount > 0) {
if (user.amount > 0) {
uint256 pending = user.amount.mul(pool.accSushiPerShare).div(1e12).sub(user.rewardDebt);
uint256 pending = user.amount.mul(pool.accStaxPerShare).div(1e12).sub(user.rewardDebt);
if(pending > 0) {
if(pending > 0) {
safeSushiTransfer(msg.sender, pending);
safeStaxTransfer(msg.sender, pending);
}
}
}
}
if(_amount > 0) {
if(_amount > 0) {
pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);
pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);
user.amount = user.amount.add(_amount);
user.amount = user.amount.add(_amount);
}
}
user.rewardDebt = user.amount.mul(pool.accSushiPerShare).div(1e12);
user.rewardDebt = user.amount.mul(pool.accStaxPerShare).div(1e12);
emit Deposit(msg.sender, _pid, _amount);
emit Deposit(msg.sender, _pid, _amount);
}
}


// Withdraw LP tokens from MasterChef.
// Withdraw LP tokens from SuperChef.
function withdraw(uint256 _pid, uint256 _amount) public {
function withdraw(uint256 _pid, uint256 _amount) public {
PoolInfo storage pool = poolInfo[_pid];
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
UserInfo storage user = userInfo[_pid][msg.sender];
require(user.amount >= _amount, "withdraw: not good");
require(user.amount >= _amount, "withdraw: not good");
updatePool(_pid);
updatePool(_pid);
uint256 pending = user.amount.mul(pool.accSushiPerShare).div(1e12).sub(user.rewardDebt);
uint256 pending = user.amount.mul(pool.accStaxPerShare).div(1e12).sub(user.rewardDebt);
if(pending > 0) {
if(pending > 0) {
safeSushiTransfer(msg.sender, pending);
safeStaxTransfer(msg.sender, pending);
}
}
if(_amount > 0) {
if(_amount > 0) {
user.amount = user.amount.sub(_amount);
user.amount = user.amount.sub(_amount);
pool.lpToken.safeTransfer(address(msg.sender), _amount);
pool.lpToken.safeTransfer(address(msg.sender), _amount);
}
}
user.rewardDebt = user.amount.mul(pool.accSushiPerShare).div(1e12);
user.rewardDebt = user.amount.mul(pool.accStaxPerShare).div(1e12);
emit Withdraw(msg.sender, _pid, _amount);
emit Withdraw(msg.sender, _pid, _amount);
}
}


// Withdraw without caring about rewards. EMERGENCY ONLY.
// Withdraw without caring about rewards. EMERGENCY ONLY.
function emergencyWithdraw(uint256 _pid) public {
function emergencyWithdraw(uint256 _pid) public {
PoolInfo storage pool = poolInfo[_pid];
PoolInfo storage pool = poolInfo[_pid];
UserInfo storage user = userInfo[_pid][msg.sender];
UserInfo storage user = userInfo[_pid][msg.sender];
pool.lpToken.safeTransfer(address(msg.sender), user.amount);
pool.lpToken.safeTransfer(address(msg.sender), user.amount);
emit EmergencyWithdraw(msg.sender, _pid, user.amount);
emit EmergencyWithdraw(msg.sender, _pid, user.amount);
user.amount = 0;
user.amount = 0;
user.rewardDebt = 0;
user.rewardDebt = 0;
}
}


// Safe sushi transfer function, just in case if rounding error causes pool to not have enough SUSHIs.
// Safe stax transfer function, just in case if rounding error causes pool to not have enough STAXs.
function safeSushiTransfer(address _to, uint256 _amount) internal {
function safeStaxTransfer(address _to, uint256 _amount) internal {
uint256 sushiBal = sushi.balanceOf(address(this));
uint256 staxBal = stax.balanceOf(address(this));
if (_amount > sushiBal) {
if (_amount > staxBal) {
sushi.transfer(_to, sushiBal);
stax.transfer(_to, staxBal);
} else {
} else {
sushi.transfer(_to, _amount);
stax.transfer(_to, _amount);
}
}
}
}


// Update dev address by the previous dev.
// Update dev address by the previous dev.
function dev(address _devaddr) public {
function dev(address _devaddr) public {
require(msg.sender == devaddr, "dev: wut?");
require(msg.sender == devaddr, "dev: wut?");
devaddr = _devaddr;
devaddr = _devaddr;
}
}
}
}